

NuTide:302 - A Phase Ib study to assess the safety, pharmacokinetics and clinical activity of the ProTide NUC-3373 when combined with standard agents used in colorectal cancer

TRJ Evans¹, SP Blagden², JS Graham¹, KK Ciombor³, A De Gramont⁴, J Tabernero⁵, JD Berlin³

1) Beatson West of Scotland Cancer Centre, University of Glasgow, 4) Department of Medical Oncology, Institut Hospitalier Franco-Britannique, Levallois- Perret, France, 5) Early Drug Development Unit, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, CIBERONC, Universitat Autonoma de Barcelona, Barcelona, Barcelona, Spain,

Background

- Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women and has a 5-year survival rate of 10% for patients with metastatic disease
- 5-fluorouracil (5-FU) remains standard of care for patients with CRC, as monotherapy or in combination with other agents
- Fluorodeoxyuridine-monophosphate (FUDR-MP), the anti-cancer metabolite of 5-FU. causes cell death by:
- o Inhibiting thymidylate synthase (TS)
- o Reducing the pool of deoxythymidine monophosphate (dTMP)
- Poor response to 5-FU is a consequence of:
- o Over 85% of 5-FU broken down by dihydropyrimidine dehydrogenase (DPD)2
- Limited dosing due to side effects caused by the accumulation of toxic metabolites³ o Key cancer resistance mechanisms:
- Cellular uptake dependent on nucleoside transporters⁴
- Complex enzymatic activation to yield active anti-cancer metabolite FUDR-MP⁴
- High tumor (or mycoplasma infection-induced) expression of thymidine phosphorylase (TP) which breaks down 5-EU5
- Short plasma half-life (8-14 minutes) results in prolonged administration times (>46 hours)
- · Effective new agents and combinations are required

NUC-3373 bypasses the key cancer resistance pathways of 5-FU

Linear and reproducible PK profile

Intracellular FUDR-MP still present at 48 hours

NUC-3373 PK profile comparison with 5-FU in NuTide:301 study

14 91 hours (+1 ///)

Plasma half-life

TS inhibition

FUDR-MP (in PBMCs)

Intracellular levels of dTMP

Toxic metabolites (dhFU, FBAL)

NUC-3373 has an advantageous pharmacokinetic profile compared to 5-FU

Intracellular FUDR-MP detectable at 5 minutes post-infusion with a top of

NUC-3373

9.7 hours

Detected (dose proportional)

Strong

Depleted

Levels not clinically significant

5-FU

8-14 minutes

Undetected⁹

Weak

No change

High levels

NUC-3373

A ProTide Transformation of 5-FU

- Designed to overcome the key 5-FU resistance mechanisms^{6,7}
- o. Protected from breakdown by DPD or TP
- Cellular uptake independent of nucleoside transporters
- o FUDR-MP generation independent of intracellular enzymatic activation
- 366x greater cytotoxicity than 5-FU in vitro
- Significantly greater anti-cancer activity in vivo compared to 5-FU
- Favorable toxicology profile compared to 5-FU

NuTide:301 - NUC-3373 first-in-human study in advanced solid tumors

- Study ongoing, interim data presented ESMO 2018 (n=36)8
- 14 primary cancer types: 50% CRC
- NUC-3373 well-tolerated, multiple cycles administered (median to: range 0.25 11.75).
- Maximum tolerated dose has not been reached
- Grade 3 treatment-related AEs: transaminitis (3), fatigue (1), shingles (1)

· Encouraging signs of clinical activity observed No Grade 4 AFs 70-year-old CRC patient, 5 prior lines of 5-FU-containing therapy; disease control for 9 months on single-agent NUC-3373 Contro NUC-3373 generates 366x higher intracellular levels of FUDR-MP than 5-FU in vitro 5-FU NUC-3373 FUDR-MP concentration (nM) (HT29 - human colorectal cancer cell line)

NuTide:302 study design

Primary objective

RP2D for NUC-3373 in combination with agents commonly used in the treatment of CRC

Secondary objectives

- Safety and tolerability
- Pharmacokinetics (PK)
- Anti-tumor activity (per RECIST 1.1)
- Effect of Jeurovorin (LV) on NUC-3373 PK and PD

Exploratory objectives

- Markers of resistance to 5-FII.
- Relationships between PK, PD and clinical activity.

Translational Research

- Exploration of the basis for response or resistance to treatment.
- Genomic, transcriptomic, and proteomic analyses.
- PK and PD analyses

NuTide:302 Two-part study of NUC-3373 in patients with recurrent metastatic CRC

- Treatment cycles are 28 days in duration with treatment every two weeks (q2w)
- Patients will continue to receive NUC-3373 and combination agent(s) until progressive disease or unmanageable toxicity
- NUC-3373 dose escalations established from the ongoing NuTide:301 study

Recruitment status at 1st January 2019

- Part 18 patients recruited to date in US and Europe
- Part 2 study planned in US and Europe

Summarv

- NUC-3373 is specifically designed to overcome the key cancer resistance mechanisms associated with 5-FU
- NuTide:302 study will determine the optimal dose of NUC-3373 in combination with agents commonly used in the treatment of patients with CRC
- NUC-3373 has the potential to offer enhanced efficacy, a favorable safety profile and a more convenient dosing regimen compared to 5-FU