

NUC-3373 induces a cytoplasmic translocation of thymidylate synthase in colorectal cancer cell lines

Fiona G. McKissock, In Hwa Um, Peter Mullen, David J. Harrison - School of Medicine, University of St Andrews, United Kingdom

Background

- 5-fluorouracil (5-FU) is a key anti-cancer drug used across a broad range of tumors
- Fluorodeoxyuridine-monophosphate (FUDR-MP), the anti-cancer metabolite of 5-FU, causes cell death by:
- Inhibiting thymidylate synthase (TS)
- Reducing the pool of deoxythymidine monophosphate (dTMP)
- Poor response to 5-FU is a consequence of:
- Over 85% of 5-FU broken down by dihydropyrimidine dehydrogenase (DPD)¹
- Limited dosing due to side effects caused by the accumulation of toxic metabolites²
- Key cancer resistance mechanisms:
- Cellular uptake dependent on nucleoside transporters³
- Complex enzymatic activation to yield active anti-cancer metabolite FUDR-MP³
- Short plasma half-life (8-14 minutes) results in prolonged administration times (>46hours)

NUC-3373 bypasses the key cancer resistance pathways of 5-FU

NUC-3373: A targeted inhibitor of TS

- ProTide transformation of 5-FU
- Designed to overcome the key 5-FU resistance mechanisms^{4,5}
- Protected from breakdown by DPD
- Cellular uptake independent of nucleoside transporters
- FUDR-MP generation independent of intracellular enzymatic activation
- 366x higher intracellular levels of FUDR-MP than 5-FU in vitro⁶
- Significantly greater anti-cancer activity in vivo compared to 5-FU
- Favorable toxicology profile compared to 5-FU

Methods

- Nine colorectal cancer (CRC) cell lines investigated
- IC₅₀ values determined by sulforhodamine B assay
- Two cell lines selected for further characterization based on their sensitivity to NUC-3373
- HCT116 (sensitive)
 SW480 (less sensitive)
- TS protein expression measured by Western blot (whole cell lysates)
- TS cellular localization investigated by immunocytochemistry (imaged by light and fluorescence microscopy)
- Approximately 800 cells under each condition were assessed

Results

Sensitivity to NUC-3373 is not dependent on basal TS protein level

Figure 1. Thymidylate synthase expression vs NUC-3373 IC₅₀ values in a panel of nine colorectal cancer cell lines

- Sensitivity to NUC-3373 is not determined by basal TS protein expression
- Cell lines were chosen to represent CRC tumor sensitivity to NUC-3373

CRC cell line characterization

	HCT116	SW480
Sensitivity to fluoropyrimidines	Sensitive ⁷	Less Sensitive ⁷
NUC-3373 IC ₅₀ (μM)	29	56
Relative doubling time	Fast	Slow
Basal TS expression	Higher	Lower
MMR status	MSI	MSS

NUC-3373 targets the *de novo* pathway of dTMP synthesis

Figure 2. Effect of thymidine supplementation of cells on NUC-3373-induced death

Thymidine supplementation rescues cells from NUC-3373-induced death

NUC-3373 forms TS ternary complexes in CRC cells

Figure 3. TS protein expression in response to 10 μM 5-FU or NUC-3373 treatment over time

- NUC-3373 induces formation of TS ternary complexes that are sustained for at least 72 hours in both cell lines
- In HCT116 cells, NUC-3373-induced complexes are more durable than those formed by 5-FLI

NUC-3373 causes nuclear to cytoplasmic translocation of TS in HCT116 cells

rgure 4. Centulal localization of 13 in Cytospinned cens and quantitative assessment of Cytopiasinic 12 (scale bar = 100 μm)

- Cellular localization of TS is predominantly nuclear in untreated control cells
- NUC-3373 increases TS protein expression and induces a translocation into cytoplasm

Cytoplasmic TS is not targeted for lysosomal degradation

Figure 5. TS and LAMP1 expression in HCT116 and SW480 cells treated with 10 μM NUC-3373 for 24 hours (scale bar = 10 μm)

 In NUC-3373-treated cells, cytoplasmic TS does not co-localize with LAMP1, indicating that it is not targeted for lysosomal degradation

Conclusion

- NUC-3373 targets the de novo pathway of dTMP synthesis
- NUC-3373 cytotoxicity is not dependent on basal TS expression
- NUC-3373 causes formation of TS complexes in HCT116 cells which are sustained longer than those induced by 5-FU
- NUC-3373 causes a translocation of TS to the cytoplasm
- NUC-3373 is a potent inhibitor of TS