Interim pharmacokinetic and pharmacodynamic data from the first-in-human study of NUC-3373, a pyrimidine nucleotide analogue, in patients with advanced solid tumours

1) Centre for Infection and Immunity, St. George’s Hospital, London, UK 2) Early Phase Clinical Trials Unit, Churchill Hospital, University of Oxford, Oxford, UK 3) University of Oxford, Institute of Cancer Research, London, UK 4) Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK 5) School of Medicine, University of St. Andrews, UK

BACKGROUND

Key cancer resistance mechanisms linked to reduced efficacy, poor prognosis and differential toxicity with S-1 FUUR (5FU regimen)

Poor PK properties of S-FU often necessitate prolonged administration times (e.g. 48 hours)

Fluoropyrimidine antagonism of FUUDR is the main anticancer metabolite of S-FU, which binds to and inhibits thymidylate synthase (TS), leading to cell cycle death

S-FU Resistance Mechanisms

Susceptibility to breakdown

- Over 85% of S-FU is broken down by dihydrofolate reductase (DHFR).
- Thymidylate (TMZ), possibly overproduced in tumours or introduced by malarial infection, also breaks down S-FU.

Metabolic degeneration results in generation of toxic metabolites, such as dihydrofolate (DHF) and dihydrofolic acid (FAD)

Requirement of activation

- S-FU is a prodrug that requires complex inhibitory enzymatic activation to generate FUUDR.
- Inhibitory enzymatic activation is linked to poor prognosis.

Resistance by transport

- Low expression of the nucleoside transporter NET1 is associated with S-FU resistance.

NUC-3373 and S-FU mechanism of action

NUC-3373

A pyrimidine nucleotide analogue designed to overcome key cancer resistance mechanisms associated with S-FU.

- A phosphonamide of FUUDR.
- Inhibits TS with an IC50 higher in cellular levels of FUUDR than S-FU in vitro.
- Up to 330x significantly greater cytotoxicity in vitro than S-FU.
- Significantly greater anti-cancer activity in vivo compared to S-FU.
- Not degraded by DHFR, unlike S-FU.
- Favoured toxicity profile compared to S-FU.

RESULTS

Plasma NUC-3373 and Intracellular FUDR-MP pharmacokinetics

- NUC-3373 administered as a short IV infusion on days 1, 8, 15 and 22 of a 28-day cycle in the ongoing NCT0430180 study.
- The first 6 patient cohorts received NUC-3373 at 125 mg/m2, 250 mg/m2, 500 mg/m2 and 750 mg/m2.
- Plasma and intracellular metabolites measured by LC/MS/MS, western blots of extracted proteins, PAGE.
- Intracellular NUC-3373 was detectable in 5 minutes post-injection with an IC50 of 1.6 x 10^-4 M and cell kill present at 64 hours.
- Intracellular NUC-3373 and AUC were linearly correlated to DMP in the 500 mg/m2 cohort 6.3 µM predicted DMP of 33.9 µM/10^9 cells and intracellular NUC-3373 was detectable in 64 hours.

CONCLUSION

- NUC-3373 is a novel pyrimidine nucleotide analogue that overcomes the key cancer resistance mechanisms associated with S-FU, and other acetoin analogues, and it is more efficacious.
- NUC-3373 generates very high intracellular concentrations of the active antineoplastic metabolite, FUUDR-MP
- TS is efficiently inhibited and repressed into TS, depleting the pool of DMP within 24 hours.
- Lack of toxic metabolic generation, suggestion of an improved tolerability profile compared to S-FU.
- NUC-3373 is resistant to S-1 FUUR-mediated cytotoxicity.
- NUC-3373 has an advantageous PK/PD profile compared to S-FU, which may allow for a more convenient dosing regimen, favourable toxicity profile and enhanced efficacy.
- Dose escalation is ongoing to establish the PK/PD profile.