A novel nucleotide analogue that overcomes the key cancer resistance mechanisms associated with poor survival

Essam Ghazaly1, Magdalena Slusarczyk2, Malcolm Mason3, John Gribben1, Christopher McGuigan2, Sarah Blagden4
1) Centre for Haematology-Oncology, Barts Cancer Institute, United Kingdom; 2) Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, United Kingdom; 3) Section of Oncology & Palliative Medicine, Valman Hospital, Cardiff University School of Medicine, United Kingdom; 4) NIHR Wellcome Imperial Clinical Research Facility, Imperial College, London W12 0HS

Acelarin: A novel nucleotide analogue that overcomes the key cancer resistance mechanisms associated with poor survival

BACKGROUND
- A novel generation of chemo-therapeutically active nucleoside analogues
- Innovative phosphoramide chemistry
- Designed to overcome key cancer resistance mechanisms
- Broad clinical utility to benefit the majority of cancer patients
- Superior efficacy and safety profile

METHODS

ProTides
- Overcomes key resistance mechanisms associated with gemcitabine
- Activator is independent of deoxycytidine kinase (dCK)
- Cellular uptake is independent of nucleoside transporters (hENT1)
- DNA replication inhibitors blocked after hENT1 inhibition using dipyridamole

Formal Toxicology Study
- Dose escalation study to determine the RP2D, safety, PK
- Stability Study
- Cytidine deaminase assay
- UV spectrum recorded from the reaction mixture

Stability Study
- Cytidine deaminase assay: UV spectrum recorded from the reaction mixture
- Stability Study
- Cytidine deaminase assay
- UV spectrum recorded from the reaction mixture

Cytotoxic Activity Studies
- Using multi-cell cancer lines, including gemcitabine resistant PANC-1 cells
- Utilising inhibitors 2T2D and NBTI to mimic cancer resistance lines
- Formal Toxicology Study
- Dose escalation study to determine the RP2D, safety, PK and antitumour activity of Acelarin
- Patients with advanced, rapidly progressing solid tumours

Phase I Study (ProGen1)
- Phase I study to determine the RP2D, safety, PK and antitumour activity of Acelarin
- Patients with advanced, rapidly progressing solid tumours

Acelarin Achieves High Intracellular Active Moiety Levels
- Gemcitabine is converted to its active triphosphate form in the presence of dCK inhibition (using 100µM deoxycytidine as a substrate competitor)
- Acelarin achieves 13x higher intracellular dFdCTP levels than gemcitabine in pancreatic cancer cells
- Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is Better Tolerated Than Gemcitabine
- Acelarin’s MTD is a higher than gemcitabine in toxicology studies with Beagle dogs

Acelarin is Achieving High Disease Control Across a Variety of Solid Tumors
- A novel nucleotide analogue that overcomes the key cancer resistance mechanisms associated with poor survival
- A novel generation of chemo-therapeutically active nucleoside analogues
- Innovative phosphoramide chemistry
- Designed to overcome key cancer resistance mechanisms
- Broad clinical utility to benefit the majority of cancer patients
- Superior efficacy and safety profile

RESULTS

Acelarin Cytotoxicity
- Acelarin achieves significant gain in tumour volume in xenografts of MiaPaCa-2 human pancreatic cancer cells
- Acelarin is more cytotoxic in RT112 resistant and resistant pancreatic cell lines

Acelarin Overcomes Cancer Resistance
- Cellular activation is independent of dCK
- Acelarin more cytotoxic than gemcitabine in RT112 bladder cancer cells and retains activity despite dCK inhibition (using deoxycytidine as a substrate competitor)

Acelarin Achieves High Intracellular Active Moiety Levels
- Gemcitabine is converted to its active triphosphate form (dFdCTP) after phosphorylation by dCK
- Inhibition of dCK by 2T2D reduces gemcitabine conversion to its active triphosphate form
- Acelarin is independent of dCK and produces high levels of dFdCTP in the presence of dCK inhibitors

Acelarin’s Superior Inhibition of Tumour Growth
- Acelarin achieves significantly greater reduction in tumour volume than gemcitabine in xenografts of MiaPaCa-2 human pancreatic cancer cells
- Acelarin is more cytotoxic than gemcitabine in RT112 resistant and resistant pancreatic cell lines

Acelarin is Better Tolerated Than Gemcitabine
- Acelarin’s MTD is a higher than gemcitabine in toxicology studies with Beagle dogs

Acelarin’s Clinical Pharmacokinetics
- A novel nucleotide analogue that overcomes the key cancer resistance mechanisms associated with poor survival
- A novel generation of chemo-therapeutically active nucleoside analogues
- Innovative phosphoramide chemistry
- Designed to overcome key cancer resistance mechanisms
- Broad clinical utility to benefit the majority of cancer patients
- Superior efficacy and safety profile

Acelarin achieves 13x higher intracellular dFdCTP levels than gemcitabine in patients

CONCLUSION
- A novel nucleotide analogue that overcomes the key cancer resistance mechanisms associated with poor survival
- A novel generation of chemo-therapeutically active nucleoside analogues
- Innovative phosphoramide chemistry
- Designed to overcome key cancer resistance mechanisms
- Broad clinical utility to benefit the majority of cancer patients
- Superior efficacy and safety profile

Acelarin is achieving high disease control across a variety of solid tumors

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Ongoing: 42 patients recruited to date

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Acelarin is being developed for patients with pancreatic, biliary, ovarian and NSCLC cancers

Imperial College acknowledges support from NIHR/Cancer Research UK Experimental Cancer Medicine Centre and NHS funding to their NIHR Biomedical Research Centre.