A Phase I first-in-human, dose-escalation and expansion study to evaluate the safety and tolerability of NUC-3373 in patients with locally advanced, unresectable or metastatic solid malignancies

SP Blagden1, E Ghazaly2, P Spiliopoulou1, J Moschandreas4, L Spiers1, V Woodcock1, V Urbanos1, C Gnanaranjan2, TRJ Evans5

1) Early Phase Clinical Trials Unit, Churchill Hospital, University of Oxford NHS Trust, Oxford, UK.
2) Centre for Haematology-Oncology, Berks Cancer Institute, London, UK.
3) Bearman Institute for Cancer Research, Glasgow, UK.
4) Centre for Statistics in Medicine, University of Oxford, Oxford, UK.
5) University of Glasgow, Glasgow, UK.

Background

- Fluoropyrimidines remain a cornerstone of cancer treatment (e.g., 5-FU, capecitabine, FUDR)
- FUDR-MP, the anti-cancer metabolite of 5-FU, causes cell death by:
 - Inhibiting thymidylate synthase (TS)
 - Reducing the pool of deoxythymidine monophosphate (dTMP)
- Poor response to 5-FU is a consequence of:
 - Over 85% of 5-FU broken down by dihydropyrimidine dehydrogenase (DPD)
 - The generation of toxic metabolites (FBAL) associated with hand-foot syndrome
- Key cancer resistance mechanisms:
 - Cellular uptake dependent upon nucleoside transporters
 - Complex enzymatic activation to yield active anti-cancer metabolite FUDR-MP
 - Thymidine phosphorylase (TP), commonly overexpressed in tumours or introduced by mycoplasma infection, breaks down 5-FU
 - Short plasma half-life of 8-14 minutes
 - Prolonged administration times (>46 hours)
- Favourable toxicology profile
- Significantly greater anti-cancer activity
- FUDR-MP generation independent of intracellular enzymatic activation
- Cellular uptake independent of nucleoside transporters
- Broad clinical utility
- Transformative phosphoramidate chemistry

NUC-3373: A ProTide Transformation of 5-FU

- Designed to overcome the key 5-FU cancer resistance mechanisms
 - Protected from breakdown by DPD or TP
 - FUDR-MP generation independent of intracellular enzymatic activation
 - Up to 330x greater cytotoxicity than 5-FU in vitro
 - Significantly greater anti-cancer activity in vivo compared to 5-FU
 - Favourable toxicology profile

Pharmacokinetics / Pharmacodynamics

- Linear and reproducible PK profile
- Intra- and inter-rater FUDR-MP detectable at 5 minutes post-infusion with a T1/2 of 14.9 ± 1.44 hours
- Intra- and inter-rater FUDR-MP still present at 48 hours

ProTides: NucleoTide Analogs

- A new class of anti-cancer agents
- Transformative phosphoramidate chemistry
- Increase intracellular levels of active anti-cancer metabolites
- Broad clinical utility

Study Design

- RP2D for NUC-3373 administered
- Fortnightly on days 1 and 15 of a 28-day cycle

Characteristics

- n
- Patient age (years): 36
- Median age (range): 60 (17-89)
- Median prior chemotherapeutic regimen: 8
- ECOG PS: 1/17/0

Primary Objectives

- Safety and tolerability
- BOR, ORR, DoR, DCR, PFS
- PK and PD

Secondary Objectives

- Safety
- BOR, ORR, DoR, DCR, PFS
- PK and PD

Dose Administered

- Patients received NUC-3373 at the following doses:
 - Part 1: 125 mg/m² to 1500 mg/m² in the weekly schedule
 - Part 2: 1500 mg/m² to 1875 mg/m² in the fortnightly schedule
- Dose escalation ongoing

Dose escalation:

- NUC-3373 is well-tolerated
- Multiple cycles administered (median 2; range 0.25 - 11.75)
- No hand-foot syndrome has been observed
- No Grade 4 AEs

Safety

- NUC-3373 is well-tolerated
- Multiple cycles administered (median 2; range 0.25 - 11.75)
- No hand-foot syndrome has been observed
- No Grade 4 AEs

Treatment Related AEs

- Grade 3
- Transaminitis
- Grade 4
- Fatigue
- Sickness

Patient Case Studies

- Colorectal Cancer
 - 70 years, male
 - 6 previous lines of therapy
- Cholangiocarcinoma
 - 60 years, female
 - 1 previous line of therapy
- Basal Cell Carcinoma
 - 55 years, male
 - 2 previous lines of therapy

Conclusion

- NUC-3373 bypasses the key cancer resistance pathways of 5-FU and capecitabine
- NUC-3373 generates 366x higher intracellular levels of FUDR-MP than 5-FU in vitro
- To date, 36 patients have been enrolled: Part I n=29; Part II n=7
- NUC-3373 overcomes the key cancer resistance mechanisms associated with 5-FU and capecitabine
- NUC-3373 is well-tolerated
- Multiple cycles administered (median 2; range 0.25 - 11.75)
- No unexpected AEs
- Encouraging early signs of activity have been observed
- Dose-escalation is ongoing to establish RP2D
- NUC-3373:302 will determine the RP2D of NUC-3373 in combination with agents commonly used in colorectal cancer
- NUC-3373 has the potential to offer a more effective and safer treatment option than 5-FU or capecitabine