NUC-3373 is a potent TS inhibitor and induces DNA damage in NSCLC cancer cells regardless of histological subtype

BACKGROUND

- Lung 2nd most common cancer Incidence: 2.2 million Leading cause of cancer mortality¹
- NSCLC accounts for ~85% cases of lung cancer, majority are adeno-or squamous carcinoma
- Systemic treatments include immune checkpoint inhibitors, chemotherapy, and targeted therapies

Thymidylate Synthase (TS) inhibitors in NSCLC

- 5-FU has limited clinical utility due to high tumor expression of DPD²
- Pemetrexed is a multi-targeted anti-folate that inhibits TS
- Used in adenocarcinoma but not recommended in squamous subtypes due to high basal TS expression³
- Upregulates PD-L1 and potentiates T-cell-mediated cytotoxicity when combined with anti-PD-L1 therapy⁴

NUC-3373: A potent TS inhibitor with additional DNA-mediated mode of action

- ProTide transformation of FUDR-MP^{5,6,} active anti-cancer metabolite of 5-FU
- Resistant to breakdown by DPD
- Low levels of toxic metabolites (FBAL, FUTP)^{7,8}
- Generates high intracellular levels of FUDR-MP resulting in potent TS inhibition and DNA damage⁸

Aim

Investigate NUC-3373-mediated TS inhibition and effect in combination with a PD-L1 inhibitor

Hypotheses

- NUC-3373 inhibits TS and causes DNA damage in NSCLC cells, regardless of histological subtype
- NUC-3373 upregulates PD-L1 promoting immunogenic cell death

NUC-3373: Overcomes limitations associated with 5-FU

METHODS

Cell culture: Adenocarcinoma (A549) and squamous (Nx002) NSCLC cell lines were treated with 1 or 10 µM NUC-3373 (sub-IC₅₀), pemetrexed or 5-FU for 6, 24 or 48 hours. Nx002 cells were treated with 10 μ M NUC-3373 for 24 hours prior to co-culture with PBMCs to test T-cell mediated cell killing modulated by NUC-3373 ± 10 µg/ml pembrolizumab. Cell confluence assessed by automated cytometry analysis (Celigo). **TS ternary complexes:** Free TS and TS ternary complex formation assessed by Western blot. **Metabolites:** FUDR-MP, FdUr and dUMP levels determined by LC-MS/MS (LLOQs: FUDR-MP=5 nM, dUMP=0.2 nM, FdUr=0.1 nM).

DNA damage: DNA damage assessed by immunofluorescence using γ -H2AX and p-Chk1. **PD-L1:** NSCLC cell surface expression measured by flow cytometry. (for all experiments, n=3)

- Indicative of more effective TS inhibition

RESULTS

servatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available from https://gco.iarc.fr/today, accessed [12 Oct 2022] 2. Hirota T et al., 2011. Biochem Pharmacol; 82: 441-452 7. Ciombor K et al., 2020. J Clin Oncol; 38 (Suppl 4) 8. Bré J et al., 2022. Cancer Res; 82 (Suppl 12): 1835 3. Scagliotti G et al., 2011. Biochem Pharmacol; 82: 441-452 7. Ciombor K et al., 2020. J Clin Oncol; 38 (Suppl 4) 8. Bré J et al., 2022. Cancer Res; 82 (Suppl 12): 1835 FUDR-DP: fluorodeoxyuridine diphosphate FUDR-MP: fluorodeoxyuridine monophosphate FUMP: fluorouridine monophosphate FUR: fluorouridine FUTP: fluorouridine triphosphate

Boback Kaghazchi^{1,} Alison L. Dickson^{1,2,} Greice Zickuhr^{1,} Oliver J. Read^{1,2,} David J. Harrison^{1,2,} Jennifer Bré^{1,2} 1) University of St Andrews, UK 2) NuCana plc, UK

Abstract Number: 185

Email: bk68@st-andrews.ac.uk

• NUC-3373 may be an effective treatment for NSCLC, regardless of histological subtype and basal TS expression